ЧТО ТАКОЕ РЕЖИМ УСИЛЕНИЯ?
Усилительный каскад, схема которого приведена на рис. 5, а характеристики — на рис. 6, работает в так называемом режиме А. В этом режиме токи через транзистор протекают непрерывно в продолжение всего периода полезного сигнала (рис. 7). При этом коллекторный ток даже в отсутствие сигнала не исчезает, а оказывается равным току покоя Iк т. Во время действия входного сигнала коллекторный (выходной) ток изменяется около значения Iк т. В режиме А ток Iк т во избежание отсечки и появления значительных искажений должен быть больше амплитуды переменной составляющей Iк m. Поэтому даже в наивыгоднейшем режиме КПД каскада может достигнуть только 45%, но в этом случае усиление происходит с большими нелинейными искажениями, так как используются нелинейные участки характеристик. Остальные 55% энергии источника питания расходуются на нагрев транзисторов.
Рис. 7. Форма коллекторного тока при работе однотактного усилительного каскада в режиме А
Однако, если построить схему усилителя по принципу двухтактного усиления (рис. 8), то можно заставить транзисторы работать в значительно более экономичном режиме В. Двухтактный усилитель представляет собой совокупность двух однотактных, работающих на общую нагрузку. Каждый из усилителей называется плечом, причем оба плеча должны быть симметричны. Для обеспечения симметрии они должны иметь транзисторы с одинаковыми параметрами и симметричные режимы по постоянному току. Такие режимы выполняются, если первичная обмотка выходного трансформатора Т состоит из двух одинаковых частей, и их входные напряжения ив% i и йвхг J симметричны, т. е. одинаковы по значению, но противоположны по фазе. Если условия полной симметрии плеч соблюдены, то составляющие токов аналогичных электродов обоих транзисторов равны. Однако на практике идеальной симметрии достигнуть невозможно. Поэтому считают, что симметрия хорошая, если постоянные составляющие коллекторных токов транзисторов различаются не более чем на 10 — 15%.
Но пока будем считать симметрию полной, поскольку в этом случае можно ограничиться рассмотрением любой половины схемы.
Если при работе усилителя в режиме А токи в коллекторных цепях транзисторов протекают непрерывно, то в режиме В каждое плечо двухтактного усилителя работает с отсечкой выходного тока. В режиме В смещение на базе транзисторов выбирают таким, чтобы угол отсечки выходного тока 0 получился равным п/2 (угол отсечки 9 равен выраженной в градусах половине продолжительности прохождения тока через транзистор). Тогда при синусоидальном входном сигнале транзистор одного плеча в течение половины периода изменения сигнала будет заперт, и усиление входного сигнала происходит только в другой половине периода (см. рис. 8,6).
Рис. 8. Принципиальная схема двухтактного трансформаторного выходного каскада (а) и форма тока одного из плеч (б)
Транзисторы обоих плеч каскада работают поочередно: один транзистор пропускает ток, другой заперт, а в следующий полупериод — наоборот. Таким образом, в режиме В постоянная составляющая коллекторного тока равна примерно одной трети амплитуды выходного тока Iк т. Первая гармоника выходного тока каскада пропорциональна амплитуде изменения коллекторного тока 1кт каждого транзистора и ее амплитуда Iвыхm = 0,51к т. Она больше постоянной составляющей в 1,5 раза, что является причиной высокого КПД каскада в режиме В. При максимальной мощности КПД достигает 78,5% (теоретически). Однако в работе транзисторов используются начальные и наиболее нелинейные участки входных характеристик, поэтому нелинейные искажения в этом режиме сравнительно велики (рис. 9,а). Когда входной сигнал отсутствует, то через коллекторы транзисторов вообще не должен протекать ток (так как транзисторы заперты смещением). В действительности через коллектор каждого транзистора протекает небольшой ток, равный обратному току коллектора IКБО.
Рис. 9. Работа двухтактного каскада: а — в режиме В; б — в режиме АВ
Однотактный каскад может работать только в режиме А, двухтактный — в режиме А и в других режимах.
В режиме А он работает сравнительно редко: лишь в тех случаях, когда желательно получить .минимально возможные нелинейные искажения усиливаемого сигнала. Мощность, снимаемая с каждого транзистора, и КПД не имеют существенного значения. Промежуточным между описанными режимами А и В является режим АВ. Для перевода каскада в этот режим надо выбрать смещение таким, при котором угол отсечки Фк=120°.
Конечно КПД каскада в режиме АВ меньше чем в режиме В, так как постоянная составляющая выходного тока Iк=0,41к т+Iк т. Поэтому КПД каскада не превышает 60%, но зато нелинейные искажения меньше, чем в режиме В, поскольку начальные и нелинейные участки входных характеристик транзисторов не искажают формы выходного сигнала. На практике ток Iкт устанавливают таким, чтобы характеристики обоих плеч схемы как бы дополняли одна другую, составляя общую прямую линию (рис. 9,6).
Если напряжение смещения очень мало, то каскад перейдет в режим С. В этом режиме транзистор имеет высокий КПД, так как постоянная составляющая Iк очень мала по сравнению с Iк т, а угол отсечки ФК<9О°. Однако амплитуды высших гармоник (особенно второй и третьей) близки к амплитуде первой гармоники и форма выходного сигнала оказывается искаженной. Поэтому режим С совершенно непригоден для усиления. Если каскад случайно оказался в этом режиме, то необходимо увеличить смещение и перевести каскад в режим АВ или В. Таким образом для работы в режиме В или АВ напряжение смещения надо выбирать таким, чтобы в исходном состоянии транзисторы были заперты, а при появлении даже очень слабого сигнала один и» них (какой — это зависит от полярности полупериода входного сигнала) сразу же открывался.
Все сказанное о выборе положения рабочей точки Т на характеристиках, о смещении, нелинейных искажениях и т. д. в полной мере относится к работе мощных транзисторов, у которых размах входного и выходного сигналов захватывает большую часть входной и выходной характеристик.При работе транзисторов с входным сигналом небольшого размаха положение рабочей точки на характеристике почти не меняется и нелинейные искажения не возникают. Однако и для таких транзисторов важен правильный выбор напряжения смещения, так как от положения рабочей точки на характеристике в» многом зависят такие параметры транзистора, как коэффициент передачи тока h21э и предельная частота fh12Э, определяющая работу транзистора на высоких частотах. Обычно следует ориентироваться на режим, рекомендуемый в справочниках: U кэ=5 В, Ik=1 мА. Но в принципе, этот режим не обязателен, не надо только ставить транзистор в крайние режимы, когда возникают нелинейные искажения, связанные с его работой на нелинейных участках характеристик (особенно при токах коллектора менее 0,5 — 0,6 мА). Кроме того при работе в максимальном режиме (коллекторное напряжение и ток максимальны) существенно снижается надежность транзистора.